On the G-Convergence of Discrete Dynamics and Variational Integrators

نویسندگان

  • Stefan Müller
  • Michael Ortiz
چکیده

For a simple class of Lagrangians and variational integrators, derived by time discretization of the action functional, we establish (i) the -convergence of the discrete action sum to the action functional; (ii) the relation between -convergence and weak∗ convergence of the discrete trajectories in W 1,∞(R;Rn); and (iii) the relation between -convergence and the convergence of the Fourier transform of the discrete trajectories as measured in the flat norm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Dynamics of Complex Bodies with Substructural Dissipation: Variational Integrators and Convergence

For the linearized setting of the dynamics of complex bodies we construct variational integrators and prove their convergence by making use of BV estimates on the rate fields. We allow for peculiar substructural inertia and internal dissipation, all accounted for by a d’Alembert-Lagrange-type principle.

متن کامل

Gamma-convergence of Variational Integrators for Constrained Systems

For a physical system described by a motion in an energy landscape under holonomic constraints, we study the -convergence of variational integrators to the corresponding continuum action functional and the convergence properties of solutions of the discrete Euler–Lagrange equations to stationary points of the continuum problem. This extends the results in Müller and Ortiz (J. Nonlinear Sci. 14:...

متن کامل

Nonstandard Finite Difference Variational Integrators for Multisymplectic PDEs

We use the idea of nonstandard finite difference methods to derive the discrete variational integrators for multisymplectic PDEs. We obtain a nonstandard finite difference variational integrator for linear wave equation with a triangle discretization and two nonstandard finite difference variational integrators for the nonlinear Klein-Gordon equation with a triangle discretization and a square ...

متن کامل

Spectral variational integrators

In this paper, we present a new variational integrator for problems in Lagrangian mechanics. Using techniques from Galerkin variational integrators, we construct a scheme for numerical integration that converges geometrically, and is symplectic and momentum preserving. Furthermore, we prove that under appropriate assumptions, variational integrators constructed using Galerkin techniques will yi...

متن کامل

An Overview of Lie Group Variational Integrators and Their Applications to Optimal Control

We introduce a general framework for the construction of variational integrators of arbitrarily high-order that incorporate Lie group techniques to automatically remain on a Lie group, while retaining the geometric structure-preserving properties characteristic of variational integrators, including symplecticity, momentum-preservation, and good long-time energy behavior. This is achieved by con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Nonlinear Science

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2004